Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3146, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605029

RESUMEN

Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Péptidos , Humanos , Fosforilación , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica , Mutación , Proteínas Intrínsecamente Desordenadas/metabolismo , Unión Proteica , Sitios de Unión , Proteínas del Ojo/genética
2.
EMBO J ; 43(4): 615-636, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267655

RESUMEN

The dynamin-related human guanylate-binding protein 1 (GBP1) mediates host defenses against microbial pathogens. Upon GTP binding and hydrolysis, auto-inhibited GBP1 monomers dimerize and assemble into soluble and membrane-bound oligomers, which are crucial for innate immune responses. How higher-order GBP1 oligomers are built from dimers, and how assembly is coordinated with nucleotide-dependent conformational changes, has remained elusive. Here, we present cryo-electron microscopy-based structural data of soluble and membrane-bound GBP1 oligomers, which show that GBP1 assembles in an outstretched dimeric conformation. We identify a surface-exposed helix in the large GTPase domain that contributes to the oligomerization interface, and we probe its nucleotide- and dimerization-dependent movements that facilitate the formation of an antimicrobial protein coat on a gram-negative bacterial pathogen. Our results reveal a sophisticated activation mechanism for GBP1, in which nucleotide-dependent structural changes coordinate dimerization, oligomerization, and membrane binding to allow encapsulation of pathogens within an antimicrobial protein coat.


Asunto(s)
Antiinfecciosos , GTP Fosfohidrolasas , Humanos , Microscopía por Crioelectrón , GTP Fosfohidrolasas/metabolismo , Dinaminas/metabolismo , Nucleótidos/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo
3.
Nucleic Acids Res ; 52(1): 370-384, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994783

RESUMEN

The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.


Asunto(s)
Exodesoxirribonucleasas , Fosfolipasa D , Humanos , Lisosomas/metabolismo , Fosfolipasa D/química , Fosfolipasas , Exodesoxirribonucleasas/química
4.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935654

RESUMEN

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Asunto(s)
Factores Reguladores del Interferón , Linfoma , Humanos , Linfocitos B/metabolismo , ADN , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Linfoma/genética
5.
Sci Immunol ; 8(79): eade7953, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662884

RESUMEN

Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.


Asunto(s)
Regulación de la Expresión Génica , Factores Reguladores del Interferón , Ratones , Animales , Humanos , Linfocitos B , ADN/metabolismo , Mutación
6.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36109648

RESUMEN

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Fosfatos de Fosfatidilinositol/metabolismo
7.
Nat Commun ; 13(1): 7641, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496453

RESUMEN

Eps15-homology domain containing proteins (EHDs) are eukaryotic, dynamin-related ATPases involved in cellular membrane trafficking. They oligomerize on membranes into filaments that induce membrane tubulation. While EHD crystal structures in open and closed conformations were previously reported, little structural information is available for the membrane-bound oligomeric form. Consequently, mechanistic insights into the membrane remodeling mechanism have remained sparse. Here, by using cryo-electron tomography and subtomogram averaging, we determined structures of nucleotide-bound EHD4 filaments on membrane tubes of various diameters at an average resolution of 7.6 Å. Assembly of EHD4 is mediated via interfaces in the G-domain and the helical domain. The oligomerized EHD4 structure resembles the closed conformation, where the tips of the helical domains protrude into the membrane. The variation in filament geometry and tube radius suggests a spontaneous filament curvature of approximately 1/70 nm-1. Combining the available structural and functional data, we suggest a model for EHD-mediated membrane remodeling.


Asunto(s)
Dinaminas , Tomografía con Microscopio Electrónico , Dinaminas/metabolismo , Adenosina Trifosfatasas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Microscopía por Crioelectrón
8.
Sci Adv ; 8(35): eabo4946, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044574

RESUMEN

Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie-shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function.

9.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551368

RESUMEN

Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6-/- mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)-containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6-/- mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.


Asunto(s)
GTP Fosfohidrolasas , Síndromes de Inmunodeficiencia , Animales , Autofagia , Células Endoteliales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Inflamación , Ratones
10.
Nat Struct Mol Biol ; 29(3): 218-228, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35256802

RESUMEN

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) is an essential member of the structurally unresolved class II PI3K family with crucial functions in lipid signaling, endocytosis, angiogenesis, viral replication, platelet formation and a role in mitosis. The molecular basis of these activities of PI3KC2α is poorly understood. Here, we report high-resolution crystal structures as well as a 4.4-Å cryogenic-electron microscopic (cryo-EM) structure of PI3KC2α in active and inactive conformations. We unravel a coincident mechanism of lipid-induced activation of PI3KC2α at membranes that involves large-scale repositioning of its Ras-binding and lipid-binding distal Phox-homology and C-C2 domains, and can serve as a model for the entire class II PI3K family. Moreover, we describe a PI3KC2α-specific helical bundle domain that underlies its scaffolding function at the mitotic spindle. Our results advance our understanding of PI3K biology and pave the way for the development of specific inhibitors of class II PI3K function with wide applications in biomedicine.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Endocitosis , Lípidos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
11.
J Biol Chem ; 298(3): 101598, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063507

RESUMEN

CD177 is a neutrophil-specific receptor presenting the proteinase 3 (PR3) autoantigen on the neutrophil surface. CD177 expression is restricted to a neutrophil subset, resulting in CD177pos/mPR3high and CD177neg/mPR3low populations. The CD177pos/mPR3high subset has implications for antineutrophil cytoplasmic autoantibody (ANCA)-associated autoimmune vasculitis, wherein patients harbor PR3-specific ANCAs that activate neutrophils for degranulation. Here, we generated high-affinity anti-CD177 monoclonal antibodies, some of which interfered with PR3 binding to CD177 (PR3 "blockers") as determined by surface plasmon resonance spectroscopy and used them to test the effect of competing PR3 from the surface of CD177pos neutrophils. Because intact anti-CD177 antibodies also caused neutrophil activation, we prepared nonactivating Fab fragments of a PR3 blocker and nonblocker that bound specifically to CD177pos neutrophils. We observed that Fab blocker clone 40, but not nonblocker clone 80, dose-dependently reduced anti-PR3 antibody binding to CD177pos neutrophils. Importantly, preincubation with clone 40 significantly reduced respiratory burst in primed neutrophils challenged with either monoclonal antibodies to PR3 or PR3-ANCA immunoglobulin G from ANCA-associated autoimmune vasculitis patients. After separating the two CD177/mPR3 neutrophil subsets from individual donors by magnetic sorting, we found that PR3-ANCAs provoked significantly more superoxide production in CD177pos/mPR3high than in CD177neg/mPR3low neutrophils, and that anti-CD177 Fab clone 40 reduced the superoxide production of CD177pos cells to the level of the CD177neg cells. Our data demonstrate the importance of the CD177:PR3 membrane complex in maintaining a high ANCA epitope density and thereby underscore the contribution of CD177 to the severity of PR3-ANCA diseases.


Asunto(s)
Autoantígenos , Proteínas Ligadas a GPI , Granulomatosis con Poliangitis , Neutrófilos , Receptores de Superficie Celular , Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Anticuerpos Monoclonales , Autoantígenos/inmunología , Membrana Celular/inmunología , Proteínas Ligadas a GPI/inmunología , Granulomatosis con Poliangitis/inmunología , Humanos , Isoantígenos/metabolismo , Mieloblastina/metabolismo , Activación Neutrófila , Neutrófilos/inmunología , Receptores de Superficie Celular/inmunología , Superóxidos/inmunología
13.
Nat Commun ; 12(1): 6466, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753925

RESUMEN

Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes.


Asunto(s)
Lisina/metabolismo , Acetilación , Animales , Drosophila , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244431

RESUMEN

Dynamin oligomerizes into helical filaments on tubular membrane templates and, through constriction, cleaves them in a GTPase-driven way. Structural observations of GTP-dependent cross-bridges between neighboring filament turns have led to the suggestion that dynamin operates as a molecular ratchet motor. However, the proof of such mechanism remains absent. Particularly, it is not known whether a powerful enough stroke is produced and how the motor modules would cooperate in the constriction process. Here, we characterized the dynamin motor modules by single-molecule Förster resonance energy transfer (smFRET) and found strong nucleotide-dependent conformational preferences. Integrating smFRET with molecular dynamics simulations allowed us to estimate the forces generated in a power stroke. Subsequently, the quantitative force data and the measured kinetics of the GTPase cycle were incorporated into a model including both a dynamin filament, with explicit motor cross-bridges, and a realistic deformable membrane template. In our simulations, collective constriction of the membrane by dynamin motor modules, based on the ratchet mechanism, is directly reproduced and analyzed. Functional parallels between the dynamin system and actomyosin in the muscle are seen. Through concerted action of the motors, tight membrane constriction to the hemifission radius can be reached. Our experimental and computational study provides an example of how collective motor action in megadalton molecular assemblies can be approached and explicitly resolved.


Asunto(s)
Dinaminas/metabolismo , Modelos Biológicos , Fenómenos Biomecánicos , Dinaminas/química , Transferencia Resonante de Energía de Fluorescencia , Cinética , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Nucleótidos/metabolismo , Dominios Proteicos , Multimerización de Proteína , Soluciones
15.
Mol Metab ; 45: 101151, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359402

RESUMEN

OBJECTIVE: Hormone secretion from metabolically active tissues, such as pancreatic islets, is governed by specific and highly regulated signaling pathways. Defects in insulin secretion are among the major causes of diabetes. The molecular mechanisms underlying regulated insulin secretion are, however, not yet completely understood. In this work, we studied the role of the GTPase ARFRP1 on insulin secretion from pancreatic ß-cells. METHODS: A ß-cell-specific Arfrp1 knockout mouse was phenotypically characterized. Pulldown experiments and mass spectrometry analysis were employed to screen for new ARFRP1-interacting proteins. Co-immunoprecipitation assays as well as super-resolution microscopy were applied for validation. RESULTS: The GTPase ARFRP1 interacts with the Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). Both proteins are co-localized at the trans-Golgi network and regulate the first and second phase of insulin secretion by controlling the plasma membrane localization of the SNARE protein SNAP25. Downregulation of both GOPC and ARFRP1 in Min6 cells interferes with the plasma membrane localization of SNAP25 and enhances its degradation, thereby impairing glucose-stimulated insulin release from ß-cells. In turn, overexpression of SNAP25 as well as GOPC restores insulin secretion in islets from ß-cell-specific Arfrp1 knockout mice. CONCLUSION: Our results identify a hitherto unrecognized pathway required for insulin secretion at the level of trans-Golgi sorting.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Factores de Ribosilacion-ADP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Femenino , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Masculino , Ratones , Ratones Noqueados , Transporte de Proteínas , Proteínas SNARE/metabolismo , Red trans-Golgi/metabolismo
16.
Nat Commun ; 11(1): 5506, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139728

RESUMEN

The heterotrimeric NatC complex, comprising the catalytic Naa30 and the two auxiliary subunits Naa35 and Naa38, co-translationally acetylates the N-termini of numerous eukaryotic target proteins. Despite its unique subunit composition, its essential role for many aspects of cellular function and its suggested involvement in disease, structure and mechanism of NatC have remained unknown. Here, we present the crystal structure of the Saccharomyces cerevisiae NatC complex, which exhibits a strikingly different architecture compared to previously described N-terminal acetyltransferase (NAT) complexes. Cofactor and ligand-bound structures reveal how the first four amino acids of cognate substrates are recognized at the Naa30-Naa35 interface. A sequence-specific, ligand-induced conformational change in Naa30 enables efficient acetylation. Based on detailed structure-function studies, we suggest a catalytic mechanism and identify a ribosome-binding patch in an elongated tip region of NatC. Our study reveals how NAT machineries have divergently evolved to N-terminally acetylate specific subsets of target proteins.


Asunto(s)
Acetiltransferasa C N-Terminal/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/enzimología , Acetilación , Secuencia de Aminoácidos , Cristalografía por Rayos X , Acetiltransferasa C N-Terminal/genética , Acetiltransferasa C N-Terminal/metabolismo , Naftoles , Unión Proteica , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Triazinas
17.
Cell Rep ; 31(7): 107667, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433976

RESUMEN

Human guanylate binding protein 1 (hGBP1) belongs to the dynamin superfamily of GTPases and conveys host defense against intracellular bacteria and parasites. During infection, hGBP1 is recruited to pathogen-containing vacuoles, such as Chlamydia trachomatis inclusions, restricts pathogenic growth, and induces the activation of the inflammasome pathway. hGBP1 has a unique catalytic activity to hydrolyze guanosine triphosphate (GTP) to guanosine monophosphate (GMP) in two consecutive cleavage steps. However, the functional significance of this activity in host defense remains elusive. Here, we generate a structure-guided mutant that specifically abrogates GMP production, while maintaining fast cooperative GTP hydrolysis. Complementation experiments in human monocytes/macrophages show that hGBP1-mediated GMP production is dispensable for restricting Chlamydia trachomatis growth but is necessary for inflammasome activation. Mechanistically, GMP is catabolized to uric acid, which in turn activates the NLRP3 inflammasome. Our study demonstrates that the unique enzymology of hGBP1 coordinates bacterial growth restriction and inflammasome signaling.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/crecimiento & desarrollo , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Inflamasomas/metabolismo , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/microbiología , GMP Cíclico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Nucleótidos de Guanina/metabolismo , Humanos , Hidrólisis , Inflamasomas/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Células THP-1 , Ácido Úrico/metabolismo
18.
Aging Cell ; 19(4): e13134, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32187825

RESUMEN

Caveolae position CaV 3.2 (T-type Ca2+ channel encoded by the α-3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large-conductance Ca2+ -activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav 3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl-ß-cyclodextrin or genetic abolition of Eps15 homology domain-containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav 3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav 1.2-/- mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV 3.2-RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV 1.2 and CaV 3.2 channel blockade. Our data demonstrate that the VSMC CaV 3.2-RyR axis is down-regulated by aging. This defective CaV 3.2-RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Senescencia Celular , Músculo Liso Vascular/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Canales de Calcio Tipo T/deficiencia , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología
19.
Proc Natl Acad Sci U S A ; 117(13): 7471-7481, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170013

RESUMEN

Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin. Concomitantly, elevated numbers of detached caveolae were found in brown and white adipose tissue lacking EHD2, and increased caveolar mobility in mouse embryonic fibroblasts. EHD2 expression itself was down-regulated in the visceral fat of two obese mouse models and obese patients. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway and imply that low EHD2 expression levels are linked to obesity.


Asunto(s)
Proteínas Portadoras/metabolismo , Caveolas/metabolismo , Ácidos Grasos/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Biophys J ; 117(10): 1870-1891, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31672269

RESUMEN

Peripheral membrane proteins with intrinsic curvature can act both as sensors of membrane curvature and shape modulators of the underlying membranes. A well-studied example of such proteins is the mechanochemical GTPase dynamin, which assembles into helical filaments around membrane tubes and catalyzes their scission in a GTPase-dependent manner. It is known that the dynamin coat alone, without GTP, can constrict membrane tubes to radii of ∼10 nm, indicating that the intrinsic shape and elasticity of dynamin filaments should play an important role in membrane remodeling. However, molecular and dynamic understanding of the process is lacking. Here, we develop a dynamical polymer-chain model for a helical elastic filament bound on a deformable membrane tube of conserved mass, accounting for thermal fluctuations in the filament and lipid flows in the membrane. The model is based on the locally cylindrical helix approximation for dynamin. We obtain the elastic parameters of the dynamin filament by molecular dynamics simulations of its tetrameric building block and also from coarse-grained structure-based simulations of a 17-dimer filament. The results show that the stiffness of dynamin is comparable to that of the membrane. We determine equilibrium shapes of the filament and the membrane and find that mostly the pitch of the filament, not its radius, is sensitive to variations in membrane tension and stiffness. The close correspondence between experimental estimates of the inner tube radius and those predicted by the model suggests that dynamin's "stalk" region is responsible for its GTP-independent membrane-shaping ability. The model paves the way for future mesoscopic modeling of dynamin with explicit motor function.


Asunto(s)
Membrana Celular/metabolismo , Dinaminas/metabolismo , Modelos Biológicos , Polímeros/metabolismo , Fenómenos Biomecánicos , Elasticidad , Simulación de Dinámica Molecular , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...